NASA Technical Memorandum 4643

Predictions of Thermal Buckling
Strengths of Hypersonic Aircraft
Sandwich Panels Using Minimum
Potential Energy and Finite
Element Methods

William L. Ko

May 1995




NASA Technical Memorandum 4643

Predictions of Thermal Buckling
Strengths of Hypersonic Aircraft
Sandwich Panels Using Minimum
Potential Energy and Finite
Element Methods

William L. Ko
Dryden Flight Research Center
Edwards, California

‘ ;l :%)ﬂ

%

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1995



CONTENTS

PAGE
AB ST RA CT .ttt 1
NOMEN CLATURE . .o e e e e e e e e e e e e 1
INTRODUGCTION . . . .ottt et e e e e e e e e e e e e e e e e e e e et ettt et e e 3
DESCRIPTION OF PROBLEM . . ... e e e e e e e e e e e e e e e e e e 4
RAYLEIGH-RITZ THERMAL BUCKLING ANALY SIS, . ... e e 4
Panel Boundary Conditions . . ... .ot e 4
Deformation FUNCLIONS. . . . ...ttt e e e e e e e e e e e e e e e 5
Thermal Buckling EQUALIONS . . . . .. ..o e e e e e e e e e 6
FINITE ELEMENT THERMAL BUCKLING ANALY SIS . ... 9
Finite Element MOEliNg . . . ..o ot e e e 9
Bigenvalue EXIraCliONS . . . . ..ot 10
NUMERICAL EXAMPLES. . . o e e e e e e 11
RESUL T S . .ottt 12
BEigenvalue [Terations . . ... ..o 12
BUCKIING TEMPEIAIUIES. . . . . oottt e e e e e e e e e e e e e 13
CON CLUSIONS. . .t e e e e e e e e e e e e e e 14
APPENDIX A—COEFFICIENTS OF CHARACTERISTICEQUATIONS ... ... 30
APPENDIX B—BUCKLING EQUATIONS. . . . e e e e 39
REFERENCES . . .. .o e e e e 48
TABLES
1. Sizesof threefinite element modelsA, B, and C (c.f.,fig.6). . ... 10
2. Buckling temperatures of sandwich panels calculated using minimum energy
and finitedlement MOdeElS. . . ... .o 13
FIGURES
1. Rectangular honeycomb-core sandwichpanel . .......... .. ... i 15
2. Rectangular sandwich panel under thermal loading. .. ... i 15
3. Fourtypesof edge conditions. . .. ... .. i e 16
4. Edgedistortions of sandwich panel under different edge conditions;

no edge distortions for 4C CONAITION. . . . . . ...ttt 17



© © N o O

11.

12.

13.

14.

Quarter-panel and half-panel regionsfor finiteelement models. .. .......... ... ... .. ... ...
Three finite element models generated for sandwich panels of different aspectratios ................
Modeling of sandwich panel. . . ... ... e
Simulation of different edge conditions . . .. .. ... . i e
Convergence curves of eigenvalueiterations; 4C condition; b/a=1......... ... ... .. ... ... ... ...

Increase of processor time with number of eigenvalue iterations;
EL XSl B400 COMUEEN . . ottt ettt e e et et e e e

Buckled shapes of b/a = 1 sandwich panel under different edge conditions;

Buckled shapes of b/a = 2 sandwich panel under different edge conditions;
TUIL PANE . .

Buckled shapes of b/a = 3 sandwich panel under different edge conditions;
At PaNEL. . .o

Buckling temperature curves for titanium sandwich panels under different
edge conditions; @ = CONStANT . . . . . ...ttt



Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investi-
gated. The panel isfastened at itsfour edgesto the substructures under four different edge conditions and is subject-
ed to uniform temperature loading. Minimum potential energy theory and finite element methods were used to
calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the
finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy
theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of
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eigenshifting on the eigenval ue convergence rate is discussed.
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NOMENCLATURE

Fourier coefficients of trial function for w, in.

. . . x 2tSEX N 21:SV XEX
extensional stiffnesses of sandwich panel, Aj; = Ty v Ap = —=LX
—VyyVyx 1=V Vyx
_ 2tV E, 2t .E _
App = — XY A, =SV Ag=2tG,., Ibin
1V, Vyx 1-VyVyx STXY

length of sandwich panel, in.

coefficients of characteristic equations

width of sandwich panel, in.
Fourier coefficients of trial function for Yy in/in
shift factor in eigenval ue extractions

Fourier coefficients of trial function for Yyz infin

2E, | 2v,,E, |

bending stiffnesses of sandwich panel, D, = ————, D,, = —X X3
Hod-vevy 2 1-v v,
2v, E, | 2E, |
D, = —YJYS =—YS D =2G.I.in-b
21 1_nyvyx 22 1_nyvyx 66 Xy S

transverse shear stiffnessesin xz-, yz-planes, DQX = h.Geyp DQy = hCGCyZ, Ib/in
flexural stiffness parameter, /D, D,,,in-b

relative displacements of actual face sheetsin x-, y-, and z-directions, in.

relative displacements of finite element face sheetsin x-, y-, and z-directions, in.
effective Young's moduli of honeycomb core, Ib/i n?

Young's moduli of face sheets, Ib/in?

effective Young's modulus of finite element sandwich core in z-direction, 1b/i n?

effective shear moduli of honeycomb core, Ib/i n2



cxz  cyz

Yxz yyz
AT
ATy

effective transverse shear moduli of finite e ement sandwich core, 1b/i n2

shear modulus of face sheets, |bl/i n?

depth of sandwich panel = distance between middle planes of two face shests, in.
depth of honeycomb core, h, = h-t,, in.
index, 1, 2, 3, ...

moment of inertia, per unit width, of aface sheet taken with respect to horizontal centroidal

axis of the sandwich panel, I = %tsh2+ %Ztg in%in
index, 1,2, 3, ...

joint location (used in figures and tables)

system stiffness matrix

index, 1, 2, 3, ...

system initial stress stiffness matrix corresponding to a particular applied force condition

T2 T.2
: . . L N, a Nya
compressive buckling load factorsin x- and y-directions, k, = > ky = —
D" D"
. NI a’
shear buckling load factor, k,, = Y
#D"

index, 1,2, 3, ...

number of buckle half wavesin x-direction
bending moment intensities, (in-b)/in
number of buckle half wavesin y-direction
thermal forces, Ib/in

structural performance and resizing finite element computer program
thickness of sandwich face sheets, in.

displacement componentsin x-, y-, and z-directions, respectively, in.
displacement vector
rectangular Cartesian coordinates

global x- and y-coordinates for finite element model
coefficients of thermal expansion, in/in-°F
coefficients of thermal shear distortion, in/in-°F
transverse shear strain in xz- and yz-planes, in/in

temperaturerise, °F

assumed buckling temperature, °F



ATy critical buckling temperature, °F
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. - T.
4 numerical coefficient of Ny ina,

numerical factor in buckling equation, which changes with the edge condition
i eigenvalue of i-th buckling mode
Vyyr Vyz Poisson ratios of face sheets, also used for those of sandwich panel

Vexy Veyz Vexz Poisson ratios of honeycomb core

. - T. 11

¢ numerical coefficient of N, ina.

PHc specific weight of titanium honeycomb core, Ib/i n3
Pi specific weight of titanium materia, Ib/i n3

INTRODUCTION

Hypersonic aircraft structural panels are subjected not only to aerodynamic loading (mechanical loading), but
also to aerodynamic heating (thermal loading). These structural panels are usually called hot structural panels be-
cause they operate at €levated temperatures. For certain cases, the thermal load could be the primary load, and there-
fore, it could be a key factor in the design of the hot structures. When a monolithic hot structure is subjected to
uniform temperature field and is allowed to expand freely, no thermal stresses can be generated in the structural pan-
el. When the temperature field is nonuniform, thermal stresses can build up in the panel eveniif it can expand freely.
In actual applications, the structural panels are attached to relatively cooler substructures (i.e., spars and ribs, both
of which act as heat sinks); the panels are, therefore, constrained from free expansion. These constraints will cause
thermal stressesto build up in the panels. The heating over an individual panel surfaceis usually relatively uniform;
however, the panel surface temperatures are seldom uniform over the entire panel surface because the panel edges
are attached to the heat sinks (i.e., relatively cooler substructures). The temperature rise over the panel surface will
then have a plateau in alarge central region and will taper down near the cooler edges. That is, the temperature rise
profile over the panel surface will look like a truncated dome shape. High-intensity thermal loading could induce
(2) thermal buckling, (2) material degradation, (3) thermal creep, (4) thermal yielding, (5) thermal cracking after
cooling down, etc. Excess thermal deformation caused by thermal buckling could disturb the airflow field, creating
localized hot spots that could degrade the panel's structural performance.

When the structural panels are applied as the hypersonic aircraft wing skins, the aerodynamic loading during
hypersonic flight will cause the wing upper panelsto be under combined spanwise compression (resulting from wing
bending) and shear (resulting from wing torsion). On the other hand, the wing lower skin panels will be subjected
to combined spanwise tension and shear loading. Under thermal 1oading, both the wing upper and lower skin panels
will be under mainly biaxial compression with certainlocalized shear. The thermal loading will increase the mechan-
ical compressive stresses in the wing upper panels, and tend to reduce the mechanical compressive stresses in the
wing lower panels. Thus, the thermomechanical buckling characteristics of the hot structural panels are a critical
concern in the hypersonic aircraft wing structural panels.

Thermal buckling problems of single plates (continuous or laminated composites) were investigated by several
authors in recent years (refs. 1-6), and thermomechanical buckling characteristics of the hot structural sandwich
panels were analyzed extensively by Ko and Jackson (refs. 7—12). Using the minimum potential energy method, Ko
and Jackson devel oped thermomechanical buckling equations for orthotropic rectangular sandwich panel s subjected
to combined mechanical compressive and shear loading, or under thermal loading (refs. 11-12).



Thisreport investigates the thermal buckling characteristics of uniformly heated rectangular titanium sandwich
panels of different aspect ratios supported under four different edge conditions. The thermal buckling loads (or buck-
ling temperatures) will be calculated using Ko-Jackson thermal buckling equations (refs. 11-12) and the finite ele-
ment method for the purpose of validating the Ko-Jackson theory. The thermal buckling solutions obtained from the
two methods will be compared and their discrepancies discussed.

DESCRIPTION OF PROBLEM

Figure 1 shows the geometry of the hypersonic aircraft rectangular sandwich panel. The sandwich panel has
length a, width b, and depth h. It is fabricated with titanium face sheets of the same thicknesses t, joined together
through a titanium honeycomb core of depth h,, using the enhanced diffusion bonding process (ref. 13). Figure 2
shows the combined thermal forces acting on the middle plane of the sandwich panel.

For the thermal buckling analysis, the panel will be subjected to uniform temperature field under four different
edge conditions shown in figure 3. The edges in the x- and y-directions are defined, respectively, as sides and ends.
The minimum potential energy thermal buckling theory developed by Ko and Jackson (refs. 11-12) and the finite
element method will be used to calculate panel buckling temperatures, and the eigensolutions based on the two
methods will be compared.

RAYLEIGH-RITZ THERMAL BUCKLING ANALYSIS

In thethermal buckling analysis of sandwich panels conducted by Ko and Jackson (refs. 11-12), the extensional
and bending stiffnesses are provided by the two face sheets, and the panel transverse shear stiffnessis provided by
the sandwich core only.

Panel Boundary Conditions

The four sets of boundary conditions used in the Ko and Jackson thermal buckling analysis (refs. 11-12) are
given below.

Case 1: Four edges simply supported (4S condition)

x=O,a:u=v=w=MX=yyZ=0 D
y:O,b:u:v:w:My:yXZ:O (2
Case 2: Four edges clamped (4C condition)
x=0a'u:v:W:a—W=y =vY,,=0 (©))
1 G % Xz yz
y=Ob:u:vzw=a—W=y =v,,=0 %
! ay Xz yz
Case 3: Two sides clamped, two ends simply supported (2C2S condition)
x=0,a:u=v=w=MX=yyZ=0 (5)
—0h 1=y == W _ _ _
y—O,b.u—v-w-—y—yxz—yyz—O (6)



Case 4: Two sides simply supported, two ends clamped (2S2C condition)
= Ve = ¥y = 0 (7)
y =V =0 8
For anisotropic sandwich panels, cases 3 and 4 will give different thermal buckling solutions.

Deformation Functions

For satisfying the different sets of boundary conditions (1) through (8), the associated deformation functions
{W, Yy yyz} chosen by Ko and Jackson (refs. 11-12) in the thermal buckling analysis of the sandwich panels have
the following forms:

Case 1: 4S condition

- mrx . Ny
w(X, y) zl ZlA sm 2 X g T 5 9)
m=1n-=
VX ¥) = z ZBWI sty (10
m=1n=1
- mx . N1y
Yyz(X ) zl Zlc ,Sin 2 OS5 (11)
m=1n=
Case 2: 4C condition
- X, Ty mnx . Ny
w(X,y) = smasmb 21 lA ,Sin 7 S5 (12
m n=

00

= cosPsnY in M gin MY
Yxz(Xy) = cos—sin—= Z Z BrnSin——sin

m=1n=1 b 3
+sm%sm1y % % mB,, cos—é—-sn—g—y
m=1n=1
YyAXy) = sn%cos’lgy % % Cpn gn%xsnngy
. (14)
+ SlnT—Z—(sn?mzlnzlnc S'nma'cosngy 14



Case 3; 2C2S condition

w(X,y) = smTt[)y Z Z A sm—sinmbTy (15)
m=1n=1
. n
VoY) = sniE 3y B cossintY (16)
m=1n=1
MMX . _n
YyA(%y) = cosn—y z Z CrpnSin— Ll Ey
m= o:.n_oo (17)
+sin1:)y Z Z nC,, snmcosngy
m=1n=1
Case 4: 2S2C condition
w(x,y) = sm— Z z A sn———sin—g—y (18)
m=1n=1
Y (X y) = cos— z Z B, sn-—a—snng—y
m=1n=1 (19)
+S|n— Z Z mB,, cos—sm%y
m=1n=1
YyAXY) = sm—— Z z Cn sm————cos%y (20)
m In=1

The choice of these four sets of deformation functions, each of which satisfies the associated boundary condi

tions (1) through (8), isfor the mathematical amenability of the eigenvalue solutions. As shown in figure 4, the zero
transverse shear distortions (i.e., y,, = 0 ory,, = 0) at the panel edges cannot be enforced simultaneously in the

actual panel deformations, except for the 4C condition.
Thermal Buckling Equations
The thermal buckling equations developed by Ko and Jackson (refs. 11-12) for uniformly heated and con-

strained rectangular orthotropic sandwich panels using the Rayleigh—Ritz method, written in terms of temperature
rise AT for each set of integral values{m, n} (or mode shape), have the following form

mnkI _
Z Z[ * Prnkt + Ok [A = 0 (21)



The bending-stiffness parameter M., and the extensional stiffness parameter P, in equation (21) are
defined as

12 23 3 21 33 13 21 32 2 31
M _ ab a—ll + Amnki (amnkl Amnkl ~ Amnkl amnkl) * @k (amnkl 8mnkl ~ Smnkl amnkl) (22)
Mkl ™ o Agear,, | KL 22 33 23 3
66 xy . a Akl — & a
e, mooooooooo™M AN MEPY s nooooooo
theory term transverse shear effect terms
Pkt = —= 22— [E(M, K)(Aq10, + Agoar,) + (0, 1)(Aza0, + Azt )] (23)
A66a Xy

The characteristic coefficients airimkl (i,j =1, 2, 3) appearing in equation (22) are defined in appendix A, and
alr_nlnlkI in equation (22) is the first part of a. ., containing no thermal loading terms (i.e., terms containing
{ Ky ky})' The parameters { &, ¢} in equation (23) are, respectively, the numerical coefficients of the load factors

{ Ky ky} contained in a#lnkl . Thevaluesof {&, {} changewith theindicial and edge conditions (ref. 12).

The numerical parameter ), appearing in equations (22) and (23), and the special delta function o

mnkl
appearing in equation (21), are defined for different edge conditions as (ref. 12)
Case 1: 4S condition
n =32
Ornkl = > rr21nkI2 > ;. m+xk = odd, n+l = odd (24)
(M =Kk)(n“ =19
Case 2: 4C condition
_@s)®
d 2
(25)

mnki[m? + k% — 2] [n” + 1% = 2]

0
(m” =K (n° =1%)[(m+ K)* = 4] [(m=kK)* = 4][(n +1)* = 4] [(n—1)* 4]

mnkl = :mzk = odd, n+| =odd

Case 3: 2C2S condition

1
(0]

N
mnki[2— (n® +1?)] (26)

o) :m+k = odd, n+| =odd
(m? = k2 (N2 =1P)[(n+1)> = 4][(n—1)* - 4]

mnkl =

Case 4: 2S2C condition

mnkl[2—(m22+ k2)] ; m+k = odd, n+! = odd (27)
(M —kA) (% = 13)[(m+Kk)* — 4] [(m—K)* - 4]

mnkl ~



In the thermal buckling equation (21), both Mynk @nd Pynk  terms contain temperature dependent material
properties. Thus, in the eigenvalue solution process using equation (21), one has to assume a buckling temperature
AT, and use the material properties corresponding to AT, as inputs to calculate the buckling temperature AT, .
This material property iteration process must continue until AT, approaches AT, . Thus, in the thermal buckling,
the eigenvalue solution process is a multi-step process. However, in the mechanical buckling, only one step eigen-
value solution processisrequired.

When the coefficient of thermal shear distortion is zero (i.e., Oyy = 0), the buckling equation (21) takes on
theform

z z |:M mnkI + Ismnkli|Ak| =0 (28)
k |

where Mk and Prnk are defined as

12 23 31 21 3 + ( 32 22 31
— _ é.ll Annkl ( Annkl @mnkl ~ Amnkl Emnki ) amnkl a'mnkl Annkl ~@mnki @mnkl
Annkl @mnkl ~ Amnkl Emnki
Prmnki = [E(M, K)(Agg0, + Agpary ) +2(n, 1) (Agr 0 + Agpary)] (30)

When equation (28) is reduced to the isotropic case with no transverse shear effects, the buckling temperature
AT, will beindependent of the material’s modulus of elasticity (ref. 14).

The characteristic equation (21) forms a system of infinite number of simultaneous homogeneous equations,
each of which isassociated with each indicial combination of {m, n}. Those simultaneous equations, generated from
equation (21), have the following characteristics. The first two terms (M, /AT + P, ) Of equation (21) are
nonzero only for theindicial conditions{m=korm—-k=2} and{n=1orn—I =2} based ontheindicial constraints
for al ., (appendix A). Thus, if (m+ n) iseven, then (k £ I) isalso even, and if (m+ n) is odd, then (k + 1) is also
odd. The special deltafunction &, in the third term of equation (21) is nonzero only when (m + K) is odd and
(nx1)isodd. It followsthat (m+ k) £ (n+1) =(mzxn) £ (kx 1) = even. Thisimpliesthat if (m+ n) is even, then
(kx1)isasoeven, andif (m+ n)isodd, soasois(k ). Because of these indicial characteristics, thereisno cou-
pling between the even case (i.e., symmetric buckling) and the odd case (i.e., antisymmetric buckling). Thus, the
simultaneous equations generated from equation (21) may be divided into two groups that are independent of each
other—one group for which (m < n) is even, and the other group for which (m+ n) isodd (refs. 11-12).

For the deflection coefficients A to have nontrivial solutions for given aspect ratio b/a, the determinant of co-
efficients of unknown Ay of the simultaneous homogeneous equations written out from equation (21) must vanish.
The largest eigenvalue 1/AT thus obtained will give the lowest buckling temperature AT, . The determinants of
the coefficients of the simultaneous equations written out from equation (21) up to order 12 are given in appendix B
for the cases m £ n = even (symmetric buckling) and m £ n = odd (antisymmetric buckling) for different edge con-
ditions. The determinants of order 12 were found to give sufficiently accurate eigensolutions and, therefore, the de-
terminants were truncated at order 12 in the present eigenvalue extractions. In appendix B one notices that for the
4Sedge condition only, (M, /AT + Pq) termsform the diagonal terms of the determinants, and the nonzero
off-diagona terms consist only of numerical values given by o, - However, for the rest of edge conditions,
(M 7 AT + Pqk) ot only appear in the diagonal terms, but also in the off-diagonal terms (mixed with the
numerical terms associated with &, )-



FINITE ELEMENT THERMAL BUCKLING ANALYSIS

The structura performance and resizing (SPAR) finite element computer program (ref. 15) was used in thefinite
element thermal buckling analysis of the sandwich panels.

Finite Element M odeling

To gather thermal buckling data of sandwich panels having a wide range of aspect ratios b/a, three basic finite
element models of different b/a were set up so that each model would cover certain limited range of b/a. Changing
b/a of each model was accomplished by simply modifying length b and keeping length a constant. Sometimes more
elements had to be added to an overstretched model to maintain proper element aspect ratios. An overstretched
model without additional elements could result inlocal buckling of slender element cellsrather than global buckling
of the panels (i.e., local buckling temperature is less than the global buckling temperature). For low b/a (<1.8) and
high b/a (>2.9) aspect ratio panels (figs. 5(a) and 5(c)) for which the lowest buckling mode were symmetric, only
the quarter panels were modeled. The SPAR constraint commands SYMMETRY PLANE = 1 and SYMMETRY
PLANE = 2 (ref. 15) were then used to generate the full panels. For moderate b/a (1.8 < b/a < 2.9) aspect ratio pan-
els (fig. 5(b)) for which the lowest buckling mode could be either symmetric or antisymmetric, half panels were
modeled. The SPAR constraints command SYMMETRY PLANE = 1 was then used to generate the full panels. For
purely antisymmetric buckling, one can model only a quarter panel and use the constraint commands SY MMETRY
PLANE = 1and ANTISYMMETRY PLANE = 2 to generate the whole panel. However, such quarter-panel models
were not used in gathering the buckling data because they consistently gave somewhat higher buckling temperatures
than those given by the half-panel models. Figure 6 shows the three basic finite element models set up for the sand-
wich panels. Both models A and C are the quarter-panel models, but model B is a half-panel model. From these ba-
sic models, several modified models (not model shown) were also set up for handling certain aspect ratios and edge
conditions.

Each face sheet of the sandwich panel was modeled with one layer of E43 elements (quadrilateral combined
membrane and bending elements) and the sandwich core with one layer of S81 elements (hexahedron (or brick) el-
ements), which connect the upper and the lower face-sheet elements E43. Because the joint locations of those face
sheet elements E43 are located in the middle planes of the respective face sheets, the finite element core depth will
then be hinstead of the actual depth h,, (fig. 7). Thus, to simulate the actual relative displacements (or maintain same
stiffness) between the two face sheetsin the sandwich thickness direction and the x- and y-directions (i.e., d; = d'y
and d1 = d'l and d2 = d‘2, fig. 7), the thickness elastic modulus E'CZ, and the transverse shear moduIiG‘CXZ and
G'CyZ of the S81 elements had to be increased dlightly according to the following relationships:

— h
Eeo = By h_c (1)
G =G h 32
cxz ~ “exz h_c (32
. _ h
chz - chz F]-c (33

One can also model the sandwich core with one layer of S81 elements having the exact depth h,,, and then con-
nect the gaps between E43 joints and S81 joints with rigid elements. However, this alternative modeling method re-
quires twice as many total joint locations, and therefore, it was not used.



For smply supported edges, free rotation and free transverse shear deformation must be allowed (fig. 8(a)). To
simulate this type of edge, pin-ended rigid rods were attached to the panel edge for connecting the two face sheets
(sandwich core carries no extensional and bending stiffnesses), and then the midpoints of the rigid rods were pin-
jointed to fix pointslying in the sandwich middle plane (fig. 8(a)). Each pin-ended rigid rod was modeled with two
identical E22 elements (beam element for which the intrinsic stiffness matrix is given). To simulate the rigidity of
therod, extensional and transverse shear stiffnesses of the E22 elements were made very large. The pin-joint condi-
tion at the face sheet edges was simulated by assigning zero values to the rotational spring constants in the stiffness
matrix for the E22 elements. The pin-joint condition at the middle-plane fixed points was simulated by relaxing the
three rotational constraints. Two methods were used to connect the ends of the E22 elements to the middie plane
fixed points. In the first method (center drawing of fig. 8(a)), the first joint of each E22 element was connected to
the associated joint of E43 element and its end point to the panel middle-plane fixed point. In the second method
(right-hand drawing of fig. 8(a)), the ends of the two identical E22 elements, whose first joints were connected to
the upper and the lower face sheets, were connected together to the middle-plane fixed point through E25 element
(zero length element used to eastically connect geometrically coincidental joints). The stiffnesses of the E25 were
made so large that the two E22 elements, connected together by the E25 element, will behave like one rigid rod.
These two types of simply supported edge simulations were found to give identical thermal buckling solutions. In
most of the buckling data gathering, the first edge simulation was used because it required less joint locations.

For the clamped edge (fig. 8(b)), the edges of the two face sheets were built into fixed vertical wallsto generate
the desired constraints of zero slope, zero in-plane displacements, and zero transverse shear deformations.

Table 1 shows the sizes of the three finite element models set up for the sandwich panels of different b/a.

Table 1. Sizesof threefinite element modelsA, B, and C (c.f., fig. 6).

Feature Model A Model B Model C

JLOC 2178 4850 4050
E43 2048 4608 3840
81 1024 2304 1920

To make sure that the above finite e ement models gave accurate eigensol utions, the sandwich cores of model A
was modified to two layers of S81 elements to investigate the eigensolution convergencies. It turned out that both
the basic and the modified models gave practically identical eigensolutions. Because the modified model required
about three times longer computational time, it was not used in the actual buckling data gatherings.

Eigenvalue Extractions

The eigenvalue egquation for buckling problemsis of the form

)\Kgx+ KX =0 (34)
where
Kg = systeminitial stress stiffness matrix (or differential stiffness matrix), corresponding to particular
applied force condition (e.g., thermal loading), and in general afunction of X
K = system stiffness matrix
X = displacement vector
A; = eigenvaluesfor various buckling modes
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The eigenvalues A; (i =1,2,3,...) are the load factors by which the static load (mechanical or thermal) must be
multiplied to produce buckling loads corresponding to various buckling modes. Namely, if the applied temperature
load is AT, then the buckling temperature AT, for thei-th buckling mode is obtained from

AT = NAT (35)

If it is desired to find eigenvalues in the neighborhood of ¢, then the following shifted eigenval ue equation may be
used.

()\—C)KgX+(K+c Kg)X =0 (36)
In the eigenval ue extractions, the SPAR program uses an iterative process consisting of a Stodolamatrix iteration
procedure, followed by a Rayleigh—Ritz procedure, and then followed by a second Stodola procedure. This process

results in successively refined approximations of i eigenvectors associated with the i eigenvalues of equation (34)
closest to zero. Reference 15 describes the details of this process.

NUMERICAL EXAMPLES

The hot structural sandwich panels analyzed were fabricated with titanium face sheets and titanium sandwich
core having the following geometrical and material properties.

Geometry:
a = 24in.
b = varying
h = 0.75in.
he = h—tg = 0.69in.
t, = 0.06in.
Material properties:
Face sheets
70°F 900 °F"
E, = E,, Ib/in? 16 x 10° 13.1x 10°
G,y Ib/in 6.2 x 10° 5.0 x 10°
Vay = Vyx 0.31 0.31
ay = ay, infin-°F 4.85x107° 5.35x10°°
O,y iNfin-°F 0 0
pr;, 1b/in3 0.16 0.16

*Mach 15 fl ight temperature.
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Honeycomb core (properties at 600 °F)

Eex = 27778 x 10* Ib/in?
Eey = 27778 x 10% Ib/in?
Eez = 27778 x 105 Ib/in?
Gexy = 0.00613 Ib/in?
Ceyz = 0.81967 x 105 Ib/in?
Cexe = 1.81 x 10° Ib/in?
Vexy = 0.658 x 1072
Veyz = 0.643 x 107°
Vexz = 0.643 x 107°
A= 9% = 537x10Cinin-°F
Oy = 0 infin-°F
PHc = 3674x1073Ib/ind

The main objective of the present report isto study the general trend of thermal buckling characteristics of sand-
wich panels under different edge conditions, and to validate Ko-Jackson theory (ref. 12). Because of the lack of ma-
terial property data at high temperatures, the material iteration process was not performed, and the face sheet
properties at 900 °F and sandwich core properties at 600 °F were used in the buckling temperature calculations.

RESULTS
Eigenvalue Iterations

In finite element eigenvalue extractions, the maximum number of iterations was set to be 100. For most cases
(with or without eigenshifting), however, the eigenvalues converged well below 100 iterations based on the conver-
gencecriterion (| Aj = Aj—1 |/ Aj) < 104, Fi gure 9 compares the convergence curves of eigenvalue iterationswith and
without shifting for the square panel (b/a = 1) under the 4C condition. With shifting, the number of iterations could
be reduced from 14 to 9 iterations. For certain cases, the number of eigenvalue iterations with shifting turned out to
be very close or even identical to that without shifting. For certain problems, such as the thermocryogenic buckling
of cryogenic tanks (ref. 16), eigenshifting could drastically reduce the number of eigenvalue iterations (i.e., reduc-
tion in computer time). For the present sandwich panel buckling problem, however, the reduction in the number of
eigenvalue iterations through the eigenshifting turned out to be relatively small or negligible.

In most of the thermal buckling data gathering, the eigenshifting method was used. The shifting factors used
were near the values of the buckling temperatures predicted from the energy theory. In figure 10 the ELXSI 6400
computer processor times are plotted as functions of the number of eigenvalueiterationsfor the four edge conditions.
The processor time per iteration (i.e., slope of the datafitting line) for the 4S, 4C, 2C2S, and 2S2C conditions are,
respectively, 2.45, 1.88, 2.48, and 2.06 minutes.
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Buckling Temperatures

Figures 11, 12, and 13, respectively, show the lowest-mode buckling shapes of sandwich panels of aspect ratios
b/a =1, 2, and 3 under the four different edge conditions. Notice that at the simply supported edges of the 4S case
and at the clamped edges of the 2C2S and 2S2C cases, the transverse shear deformations cannot be zero (fig. 4). At
higher b/a (figs. 12 and 13), the 4C and 2S2C cases required finer element model s for obtaining global buckling. The
square panel (b/a =1, fig. 11), under all the four different edge conditions, buckled symmetrically with{m=1,n=
1} buckling mode. For the b/a = 2 rectangular panel (fig. 12), the 4S, 4C and 2C2S conditions still induced symmet-
rical buckling mode of {m=1, n=1}. However, under the 252C condition, the rectangular panel buckled antisym-
metrically under {m = 1, n = 2} buckling mode. For the slender panel of b/a = 3 (fig. 13), both 4S and 2C2S
conditions continued to induce symmetrical buckling mode of {m =1, n = 1}. However, under the 4C and 252C
conditions, the multiple symmetrical buckling mode of {m=1, n= 3} turned out to be the lowest buckling mode. In
figure 14 the thermal buckling temperatures cal culated using the minimum energy method (solid curves) and the fi-
nite element method (circular symbols) are plotted as functions of panel aspect ratio b/a for the four cases of edge
conditions. Notice that for the high values of b/a, the thermal buckling solutions for the 2C2S and 2S2C cases ap-
proach those of the 4S and 4C cases, respectively, because the constraint effects of the shorter edges of the slender
panels diminish. The buckling solutions obtained from the two methods compare fairly well. The average solution
difference between the two methods are 3.87%, 1.62%, 2.04% and 2.71% respectively for the 4S, 4C, 2C2S and
2S2C cases. The finite element method tends to give slightly lower buckling temperatures than those given by the
minimum-energy method. The reason could be the following: (1) the finite element method allows deformationsin
the sandwich thickness direction, which the minimum energy theory ignores, (2) the theoretical edge conditions of
zero y,, and y,, (egs. (1), (2), (5)—(8)) cannot be enforced properly in the finite element edge constraints for the
4S, 2C2S, and 2S2C conditions (fig 4), and (3) the finite element modeling assumptions. For the 4C case only, all
the theoretical edge conditions could be enforced in the finite element edge constraints. For 4S, 4C and 2C2S cases,
the discrepancy of the eignsolutions between the two methods is larger at the low values of b/a, and gradually di-
minishes at high values of b/a. This solution discrepancy is minimum for the 4C case, and maximum for the 4S case
(because both y,, and y,,, cannot be zero at the edges of the finite element modes). For the 2S2C casg, the solution
discrepancy isamost unaffected by the change of b/a. Table 2 lists the buckling temperatures AT, calculated from
the minimum energy and the finite element methods.

Table 2. Buckling temperatures of sandwich panels calculated using minimum energy and finite
element models.

ATe, °F

4S 4C 2C2S 252C

Energy Finite Energy Finite Energy Finite Energy Finite
b/a  theory element theory element theory element theory  element

05 1297 1207 2541 2498 2424 2366 1512 1464

0.6 1051 970 2169 2126 1995 1938 1334 1286
0.7 885 815 1889 1847 1654 1603 1232 1187
0.8 769 710 1683 1645 1387 1343 1175 1132
0.9 682 637 1535 1499 1181 1143 1144 1105
10 622 583 1428 1396 1021 988 1128 1093
11 575 547 1352 1322 897 866 1122 1090
12 538 513 1297 1271 799 774 1121 1092
14 486 465 1232 1209 662 640 1126 1102
16 451 436 1199 1179 573 560 1136 1116
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Table 2. Concluded.
ATe, °F

4S 4C 2C2S 252C

Energy Finite Energy Finite Energy Finite Energy Finite
b/a theory element theory element theory element theory  element

18 427 416 1183 1165 514 504 1144 1130
20 409 403 1175 1160 473 471 1128 1096
22 396 391 1172 1158 444 439 1122 1092
24 386 382 1171 1156 423 419 1121 1094
2.6 379 376 1164 1155 407 404 1122 1099
2.8 372 370 1156 1151 395 393 1126 1100
3.0 367 366 1150 1145 386 384 1128 1095
4.0 353 348 1140 1121 360 360 1124 1100

CONCLUSIONS

Thermal buckling characteristics of hypersonic aircraft honeycomb-core sandwich panels subjected to uniform
temperature | oading were anal yzed using minimum energy theory and finite element methods. The thermal buckling
curves were generated for titanium sandwich panels of various aspect ratios. The two methods predicted very close
buckling temperatures, and thus, the Ko-Jackson theory was validated. The finite element method tended to give
dightly lower buckling temperatures than those given by the minimum energy theory. The dlight discrepanciesin
the eigensol utions between the two methods could be attributed to the following:

1. The minimum energy theory does not consider deformations in the panel thickness direction, whereas the
finite element method does.

2. The theoretical zero transverse shear deformations at the panel edges cannot be enforced in the finite
element models with simply supported edges and cannot be enforced simultaneously in the finite elements
models with mixed simply supported and clamped edges.

3. Assumptions made in finite element modeling.

The discrepancy of the eigensol utions between the minimum energy theory and the finite element method isthe
largest for the simply supported edge condition, because the zero transverse shear deformations at the panel edges
cannot be constrained in the finite element models. This solution discrepancy islarger at low values of b/a and grad-
ually decreases as b/a increases. For the sandwich panels the eigenshifting has small effect on the improvement of
the elgenval ue convergence rate.

The author gratefully acknowledges the contribution of the late Raymond H. Jackson, NASA mathematician, in
setting up computer programs for the eigenval ue extractions.

Dryden Flight Research Center

National Aeronautics and Space Administration
Edwards, California, June 14, 1994
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Figure 2. Rectangular sandwich panel under thermal loading.
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(a) Four edges simply supported (4S condition). (b) Four edges clamped (4C condition).
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(c) Two sides clamped, two ends simply supported (d) Two sides simply supported, two ends clamped
(2C2S condition). (2S2C condition).

Figure 3. Four types of edge conditions.
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Figure 4. Edge distortions of sandwich panel under different edge conditions; no edge distortions for 4C condition.
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Region modeled
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(a8 Symmetric buckling(m=1, n=1).

Region modeled
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(b) Antisymmetric buckling(m=1, n=2).

Region modeled
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(c) Symmetric buckling (m=1, n=3).

Figure 5. Quarter-panedl and half-panel regions for finite element models.
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Figure 9. Convergence curves of eigenvalue iterations; 4C condition; b/a = 1.
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29



APPENDIX A

COEFFICIENTSOF CHARACTERISTIC EQUATIONS

The characteristic coefficients aHmkl appearing in equation (22) are defined in the following for different indi-
cia and edge conditions (ref. 12).

Case 1: 4S condition
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Case 2: 4C condition
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Case 4: 252C condition
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APPENDIX B

BUCKLING EQUATIONS

The buckling eguaions (eigenval ue solution egquaions) written out from equaion (21) up to order 12 (i.e., 12 X
12 matrices) for the cases m+ n = even (symmetric buckling) and m+ n = odd (antisymmetric buckling) for different
edge conditions are given on the following pages (ref. 12).
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Case 1: 4S condition

m £ n = even (symmetric buckling)
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m = n = odd (antisymmetric buckling) (4S)
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Case 2: 4C condition
m £ n = even (symmetric buckling)
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m = n = odd (antisymmetric buckling) (4C)
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Case 3: 2C2S condition
m £ n = even (symmetric buckling)
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m = n = odd (antisymmetric buckling) (2C2S)
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3 Case 4: 2S2C condition

m £ n = even (symmetric buckling)
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m = n = odd (antisymmetric buckling) (2S2C)

Ay -

m=1, n=2

m=2, n=1

m=1, n=4

m=2, n=3

m=3, n=2

m=4, n=1

m=1, n=6

m=2, n=5

m=3, n=4

m=4, n=3

m=5, n=2

m=6, n=1

AlZ A21

Myo1, 4
a7 TPz Tz

Ma1o1
AT Po1o1

_8
225

Mis1a
T P1a14

Symmetry

-8
35

M 2323

2220y
AT

Az Ay Ass
Mg 8
a7 tPe2 35 0
44 M 4
315 —E 4Py T
AT 175
16
0 55 0
44 4
Paz 175 0 =
M3z, 184
a7 P2 Tosm 0
Ma1 8

T Pua o35

Mie1e i
AT

Ags A
= 0
o mm
587 !\‘AA‘l'j-‘F‘SA + Pz
_ 0
Pis ~ % 0
Masos 88

N

A Asp
o 1%
S 0
Maass 12

AT " Pme 175

% MA_s_z_l:s_g + Py
o
- 0

M5252
AT T Pszs2

4725
0
172
3465

M 161
T Pas1

3675

0

17325

1180
3861

Me161
T T Pe161

(B-8)



10.

11.

12.

13.

48

REFERENCES

Gowda, R. M. Siddaveere and K. A. V. Pandalai, Thermal Buckling of Orthotropic Plates, Studiesin
Structural Mechanics, Hoff's 65th Anniversary Volume, Indian Institute of Technology, Madras-36,
India, 1970, pp. 9-44.

Tauchert, T. R. and N. N. Huang, “Thermal Buckling and Postbuckling Behavior of Antisymmetric
Angle-Ply Laminates,” Proc. Internat'l Symp. Composite Materials and Structures, Beijing, China,
June 1986, pp. 357-362.

Tauchert, T. R. and N. N. Huang, “Thermal Buckling of Symmetric Angle-Ply Laminated Plates,”
Composite Sructures, 1. H. Marshall-editor, Elsevier Applied Science, London, 1987, pp. 1424-1435.

Thangaratnam, Kari R., Palaninathan, and J. Ramachandran, “Thermal Buckling of Composite Lami-
nated Plates,” Computers and Sructures, Vol. 32, No. 5, 1989, pp. 1117-1124.

Huang, N.N. and T.R. Tauchert, “Postbuckling Response of Antisymmetric Angle-Ply Laminates to
Uniform Temperature Loading,” Acta Mechanica, Vol. 72, 1988, pp. 173-183.

Tauchert, TheodoreR., “ Thermal Stressesin Plates—Statical Problems,” in Thermal Stresses|, Vol. 1,
Elsevier Sciences Publishing Co., New Y ork, 1986, pp. 23-141.

Ko, William L. and Raymond H. Jackson, Thermal Behavior of a Titanium Honeycomb-Core Sand-
wich Panel, NASA TM-101732, 1991.

Ko, William L. and Raymond H. Jackson, “Combined Compressive and Shear Buckling Analysis of
Hypersonic Aircraft Structural Sandwich Panels,” AIAA Paper No. 92-2487-CP. Presented at the 33rd
AIAA/ASME/ASCE/AHS/IASC Structures, Structural Dynamics and Materials Conference, Dallas,
Texas, April 13-15, 1992; also NASA TM-4290, 1991.

Ko, William L. and Raymond H. Jackson, Combined-Load Buckling Behavior of Metal-Matrix Com-
posite Sandwich Panels Under Different Thermal Environments, NASA TM-4321, 1991.

Ko, William L. and Raymond H. Jackson, “ Compressive and Shear Buckling Analysisof Metal Matrix
Composite Sandwich Panels under Different Thermal Environments,” Composite Structures, Vol. 25,
July 1993, pp. 227-239.

Ko, William L., “Mechanical and Thermal Buckling Analysis of Sandwich Panels Under Different
Edge Conditions,” Proc. 1st Pacific International Conference on Aerospace Science and Technology,
Tainan, Taiwan, Dec. 6-9, 1993.

Ko, William L. and Raymond H. Jackson, Mechanical and Thermal Buckling of Rectangular Sand-
wich Panels Under Different Edge Conditions, NASA TM-4535, 1994.

Tenney, D. R., W. B. Lisagor, and S. C. Dixon, “Materials and Structures for Hypersonic Vehicles,”
J. Aircraft, Vol. 26, no. 11, Nov. 1989, pp. 953-970.



14. Thornton, Earl A. “Thermal Buckling of Plates and Shells,” Applied Mechanics Review, Vol. 46,
No. 10, October 1993, pp. 485-506.

15. Whetstone, W. D., SPAR Structural Analysis System Reference Manual, System Level 13A, Vol. 1,
Program Execution, NASA CR-158970-1, Dec. 1978.

16. Ko, William L. “ Thermocryogenic Buckling and Stress Analyses of 9 Partially Filled Cryogenic Tank
Subjected to Cylindrical Strip Heating,” Proceedings of 2nd Thermal Structures Conference,
Charlottesville, Virginia, Oct. 18-20, 1994. Also, NASA TM-4579, Oct. 1994.

49



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,

VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 1995

3. REPORT TYPE AND DATES COVERED
Technica Memorandum

4. TITLE AND SUBTITLE

Predictions of Therma Buckling Strengths of Hypersonic Aircraft Sandwich
Panels Using Minimum Potential Energy and Finite Element Methods

6. AUTHOR(S)

William L. Ko

5. FUNDING NUMBERS

WU 505-70-63

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Dryden Flight Research Center

PO. Box 273

Edwards, California 93523-0273

8. PERFORMING ORGANIZATION
REPORT NUMBER

H-2009

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-4643

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified—Unlimited
Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The
panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform
temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel
buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method
gave dightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this
slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue
convergence rate is discussed.

14. SUBJECT TERMS

Different edge conditions, Finite element method, Minimum potential energy theory,

Sandwich panels, Thermal bucklings

15. NUMBER OF PAGES
54

16. PRICE CODE
A04

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Linthicum Heights, MD 21090; (301)621-0390

Available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road,

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102




	Cover Page
	Title Page
	Table of Contents
	Abstract
	Nomenclature
	Introduction
	Description of Problem
	Rayleigh-Ritz Thermal Buckling Analysis
	Panel Boundary Conditions
	Deformation Functions
	Thermal Buckling Equations

	Finite Element Thermal Buckling Analysis
	Finite Element Modeling
	Eigenvalue Extractions

	Numerical Examples
	Results
	Eigenvalue Iterations
	Buckling Temperatures

	Conclusions
	Figures
	Appendix A: Coefficients of Characteristic Equations
	Appendix B: Buckling Equations
	References
	RDP Page

